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The use of profiling by ethnicity or nationality to trigger secondary
security screening is a controversial social and political issue.
Overlooked is the question of whether such actuarial methods are
in fact mathematically justified, even under the most idealized
assumptions of completely accurate prior probabilities, and sec-
ondary screenings concentrated on the highest-probablity individ-
uals. We show here that strong profiling (defined as screening at
least in proportion to prior probability) is no more efficient than
uniform random sampling of the entire population, because re-
sources are wasted on the repeated screening of higher probabil-
ity, but innocent, individuals. A mathematically optimal strategy
would be ‘‘square-root biased sampling,’’ the geometric mean
between strong profiling and uniform sampling, with secondary
screenings distributed broadly, although not uniformly, over the
population. Square-root biased sampling is a general idea that can
be applied whenever a ‘‘bell-ringer’’ event must be found by
sampling with replacement, but can be recognized (either with
certainty, or with some probability) when seen.

screening � square-root biased sampling � rare events

In a large population of individuals labeled j � 1,2,…, N,
governments attempt to find the rare malfeasor j � j* (ter-

rorist, for example, refs. 1–3)† by assigning prior probabilities pj
to individuals j, in some manner estimating the chance that each
is a malfeasor. Societal resources for secondary security screen-
ing are then concentrated against individuals with the largest
priors. We may call this ‘‘strong profiling’’ if the concentration
is at least proportional to pj for the largest values of pj. Secondary
screening may take the form of airport luggage search, police
investigation, physical search, or other societally sanctioned but
personally intrusive actions.

In general, police strategies that use such priors are termed
actuarial methods (4). Racial profiling, as commonly defined (5),
is one such actuarial method. It occurs when an individual’s prior
is explicitly conditioned on his or her race, ethnicity, nationality,
or religion. What distinguishes racial profiling, and actuarial
methods generally, from investigational methods often per-
ceived as more acceptable is that the prior probabilities are
associated with the individual a priori, and not associated with
evidence of any actual criminal conduct.

This article looks at the first-order efficiency of profiling
methods: How much screening must we do, on average, to catch
a malfeasor. There are also second-order effects, not addressed
here. Groups may change their behavior in response to being
profiled (or not). Indeed, it is a matter of debate as to whether
second-order effects are net positive or negative (4, 6, 7),
because nonprofiled groups may (under lower scrutiny) increase
their antisocial behaviors, even as such behaviors by profiled
groups may decrease. Given such second-order ambiguities,
elucidation of the first-order problem seems useful, especially
because (as we will see) it has some nonobvious features.

Authoritarian vs. Democratic Strategies
For simplicity, assume that there is only a single malfeasor j �
j*. (Below, we will indicate why this assumption is not actually

necessary to what follows.) An omnipotent authoritarian gov-
ernment can enumerate all of its citizens j, and then screen each
in turn, that is, by sampling without replacement. If the govern-
ment knows nothing else about its citizens, then it must simply
screen all in an arbitrary order until it finds the malfeasor j*. On
average, this will occur after N/2 samples.

But what if the government can assign a meaningful prior
probability pj to each individual j � 1,…, N? Then the optimal
strategy is to sort the pj’s from largest to smallest value, and then
screen individuals in the population, visiting each just once in
decreasing order of their probability. This ‘‘authoritarian’’ strategy
can easily be seen to find the malfeasor with the smallest possible
average number of tests, because any other screening order can be
improved by the pairwise exchange of any 2 out-of-order individ-
uals. The smallest possible average number of tests is thus

�A � �
i�1

N

ip�i� [1]

where p(i) is the order statistic; that is, p(i) is the ith largest value
among the pj’s.

For moral or practical reasons, democratic governments em-
ploy strategies not requiring the enumeration of all individuals
and the availability of their individual dossiers at every check-
point. Thus, the only ‘‘democratic’’ strategies available involve
sampling with replacement: Individuals may be sampled with
some individualized profile sampling probability qj determined
by a public policy. But, the sampling process is memory-less in
that an individual is liable to be sampled more than once,
according to his profile—for example, whenever he goes through
an airport security checkpoint.

Square-Root Biased Sampling. In the democratic case, the proba-
bility of not finding the malfeasor on exactly m � 0 looks, and
finding him on the m � 1st is (1 � qj*)mqj*. So the mean number
of looks required is

�
m�0

�

�m � 1��1 � qj*�
mqj* � 1/qj* [2]

(an answer that we could have written down by inspection). We
can take the expectation of this over the remaining random
variable, namely, which value j is j*. This expectation, which we
want to minimize subject to �q i � 1, is thus
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�D � �
j�1

N

pj/qj . [3]

A straightforward minimization with a Lagrange multiplier gives
the optimal choice for the qj’s

qj � pj
1/2��

i�1

N

pi
1/2 [4]

and the mean number of tests per found malfeasor,

�D � ��
j�1

N

pj
1/2�2

. [5]

In words, Eq. 4 says that individuals should be selected for
screening in proportion to the square root of their prior
probability. This does use the priors, but only weakly; it results
in secondary screening being distributed over a much larger
segment of the population than would be the case with strong
profiling. Although Eq. 4 should be a well-known result, we are
not aware of any published reference earlier than Abagyan and
collaborators in a completely different context (8, 9).

Comparison with Naive Sampling Strategies. It is informative to
compare Eq. 5, the optimal result, with the corresponding results
for 2 naive (but still democratic) sampling strategies. First,
uniform sampling with replacement (ignoring the pi’s):

qi �
1
N

, � � �
i

pi

1/N
� N . [6]

Second, sampling in proportion to pi [what would be called
importance sampling in the context of Monte Carlo integration
(10)]. This seems like a natural way to sample likely malfeasors
more heavily, and is an example of what we have termed ‘‘strong
profiling.’’ However, as long as no pi’s are exactly zero, it gives

qi � pi , � � �
i

pi

pi
� N [7]

exactly the same as uniform sampling, Eq. 6. The reason that this
strong profiling strategy is inefficient is that, on average, it keeps
retesting the same innocent individuals who happen to have large
p j values. The optimal strategy is optimal precisely because it
avoids this oversampling.

Efficiency of Democratic Strategy for Model Distributions
A figure of merit for the optimal democratic sampling, Eq. 4,
is its efficiency with respect to the best authoritarian strategy,
Eq. 1. Define the efficiency as � � �A/�D, a value between 0
(ineffectual) and 1 (as good as best authoritarian). To get a
sense of how square root biased sampling performs, we can
compute � for various assumptions about the distribution of
p j’s. For example, if the prior probability is concentrated
uniformly in some number of individuals N0 (out of N), and
negligible (but not strictly zero) in the remaining N � N0, then
� � 1/2, independent of N0. That is, the optimal democratic
sampling is just a factor of 2 less efficient than the authori-
tarian strategy; this is entirely due to its repeated sampling of
some individuals. In this case, both uniform sampling and
importance sampling (above) would have much smaller effi-
ciencies, � � (1/2)N0/N.

Another interesting case is the ‘‘scale-free’’ power-law distri-
bution pj 	 1/j�. This yields (see Appendix)

� � 	 �2 � ��/4 for 0 � � 	 2,

�� � 1� /
�� /2�2 for � � 2, [8]

where 
 is the Riemann Zeta function. For � � 2, both cases are
approximately �� � 2�/4. For large �, � � 1. In all of these cases,
for any fixed value � not near 2, the democratic strategy is within
a constant efficiency factor of the authoritarian strategy. The
singular case �3 2 gives a result approaching zero with large N,
� 3 1/log N, which is small only logarithmically.

The red curves in Fig. 1 show these behaviors, both for the
asymptotic case of N3 � (Eq. 8), and for a finite case with N �
10,000 (that is, 1/ln(N) � 0.11, solid curve). Shown in green are
the corresponding efficiencies for the democratic, but subop-
timal, strategies of uniform sampling or importance sampling
(i.e., strong profiling), the identical results of Eqs. 6 and 7.
Although the efficiency is finite for finite N � 10,000 (solid
green curve), as N3 � it goes to zero except at � � 0 (dotted
green curve).

A third test case of interest is pj 	 exp(�� j1/). This occurs in
cases where the j’s are ordered by radius from the origin in a (say)
high-dimensional space, and the probability decreases away from
the origin either exponentially or as a multivariate normal distri-
bution. It also applies to a mixture of such distributions, and thus to
Gaussian mixture models, in general. In all such cases  is related
to (and increases with) the dimension of the space. One readily
calculates (see Appendix),

� � 
�1 � 2�/�22�1
�1 � �2� [9]

with the limiting cases �1/2 as  3 0 and �(1/2)(�)�1/2 as 
becomes large, a surprisingly modest increase for what might
have been thought to be a dimensional explosion of volume.
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Fig. 1. Efficiency of various ‘‘democratic’’ sampling strategies with re-
spect to the ‘‘perfect authoritarian’’ strategy, for power-law distributions
of prior probability pj 	 j � � with exponent �. Solid curves are calculated for
population size N � 10,000; dashed curves show asymptotic results for N3
�. The red and blue curves are for optimal square-root biased sampling and
(except for the special case � � 2) maintain finite efficiency even as N
becomes large. The green curves represent both uniform importance
sampling (a type of strong profiling). Their efficiency is always suboptimal,
and goes to zero for large N or increasing exponent �. Blue and red curves
differ by whether the malfeasor can always be recognized (s � 1.0), or can
be recognized only with probabilities s � 0.25 or 0.05. As the recognition
probability becomes small, the advantage of an authoritarian strategy over
a democratic strategy decreases.
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Case of Probabilistic Recognition of Malfeasor
What if we can not always recognize the malfeasor j*, even when we
sample him? This could be because some additional random
condition (not within our control) is required for recognition.
Suppose that, on each look, the probability that we recognize the
malfeasor is si, i � 1,…, N; and that (for simplicity) each look is
independently random.

Best Authoritarian Strategy. The authoritarian strategy that led to
Eq. 1 is now no longer valid, because it looked at each
enumerated person only once. Instead, if we have looked at
person i already mi times, then its probability of both being the
malfeasor and escaping previous detection is (1 � si)mipi. So
the total remaining probability in which the malfeasor is to be
found is

P � �
i

�1 � si�
mi pi . [10]

Now suppose we look next at person j. Then the change in Eq.
10 is

� P � �1 � sj�
mjpj � �1 � sj�

mj�1pj � �1 � sj�
mjsjpj � umj , j . [11]

Thus, the greedy strategy, which can easily be seen to be also the
optimal strategy, is to visit the j’s according to the order statistic of
the 2-dimensional lattice um, j, with j � 1,…, N and integer m � 0.
Denoting that order statistic by u(i), we have

�A� � �
i

iu�i� [12]

because one easily checks that

�
m, j

um, j � �
i

u�i� � 1. [13]

Best Democratic Strategy. We derive the best democratic strategy
as before. The mean number of looks to success is (si*qi*)�1, so
we want to minimize

� � �
j

pj

sjqj
. [14]

Now the same calculation as before gives,

qj � 
 pj

sj
��

i


 pi

si
[15]

and

�D� � ��
i


 pi

si�2

. [16]

The optimal sampling, still square-root biased as before, is seen to
expend relatively more samples on the less-likely-to-recognize cases
(smaller values si). It is the opposite of the proverbial ‘‘looking
under the lamppost.’’ In rough terms, if you do not spend quite a lot
of time ‘‘not under the lamppost,’’ then you provide excessive
sanctuary for the malfeasor who might be there.

We have calculated the efficiency of the best democratic strategy,
now � � �A�/�D�, for the same kinds of test distributions for the pj’s
as was done above, with various assumptions about the sj’s (for
example, constant values 0 � s � 1). Eq. 16 is evaluated straight-
forwardly, whereas Eq. 12 benefits from the use of a heap data
structure to iterate efficiently over the (m, j) lattice. Specifically,
because um, j decreases monotonically with m, we can store the

next-to-use value for each j on the heap, and then efficiently retrieve
the largest one (and store the next). In all cases tried, the efficiency
� increases monotonically as s (or any of the sj’s) decreases from the
original case of perfect recognition, sj � 1. Intuitively, the author-
itarian advantage of being able to sample without replacement
becomes less important when the malfeasor is more difficult to
recognize. The blue curves in Fig. 1 show the efficiency � in the case
of a power-law distribution for the pj’s with N � 10,000, for 2
assumed values of sj � s (0.25 and 0.05), computed as described.

Discussion
None of the results in the article actually depend on our original
assumption of a single malfeasor. To see this, note that all results
apply separately to each of multiple malfeasors as if he were the only
one. Because the identical sampling prescription is obtained in each
case, it is optimal for minimizing the mean number of tests for each
malfeasor. That is, there is no better strategy for any malfeasor.

The idea of sampling by square-root probabilities is quite general
and can have many other applications. It applies whenever a
‘‘bell-ringer’’ event must be found by sampling with replacement,
but can be recognized when seen. For example, one can thus sample
paths through a trellis or hidden Markov model when their number
is too large to enumerate explicitly, but one path can be recognized
(e.g., by secondary testing) as the desired bell ringer. It seems
peculiar that the method is not better known.

Appendix
We here calculate the approximations for � in Eqs. 8 and 9. Because
� is invariant under scaling all of the pi’s by a constant, we may here
use nonnormalized pi’s. For 0 � � � 2, we approximate the sums
by integrals, which is accurate for large N,

�
i

ip�i� ��
1

N�1

x1��dx �
1

2 � �
�N � 1�2��

��
i

pi
1/2�2

���
1

N�1

x��/2 dx�2

�� 2
2���2

�N�1�2��

[17]

yielding one case of Eq. 8. For � � 2, the sums are now
dominated by small values of i, so we can approximate by
extending the sums to infinity. If 
( ) is the Riemann Zeta
function, we have p(i) � i��/
(�) and

�
i

ip�i� �

�� � 1�


���

��
i

pi
1/2�2�


��/2�2


���
[18]

which implies the second case of Eq. 8.
To obtain Eq. 9, we approximate the sums by integrals,

�
i

ip�i� ��
0

�

x exp���x1/�dx � ��2
�2�

��
i

pi
1/2�2

� ��
0

�

exp�� 1
2

�x1/� dx� 2

� 22��2
� � 1�2.

[19]
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