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Abstract 

The estimation of remaining useful life (RUL) of a faulty 
component is at the center of system prognostics and health 
management. It gives operators a potent tool in decision 
making by quantifying how much time is left until 
functionality is lost. This is especially true for aerospace 
systems, where unanticipated subsystem downtime may 
lead to catastrophic failures. RUL prediction needs to 
contend with multiple sources of error like modeling 
inconsistencies, system noise and degraded sensor fidelity. 
Bayesian theory of uncertainty management provides a way 
to contain these problems by integrating out the nuisance 
variables. We use the Relevance Vector Machine (RVM), 
for model development. RVM is a Bayesian treatment of the 
well known Support Vector Machine (SVM), a kernel-based 
regression/classification technique. This model is next used 
in a Particle Filter (PF) framework. Statistical estimates of 
the noise in the system and anticipated operational 
conditions are processed to provide estimates of RUL in the 
form of a probability density function (PDF). Validation of 
this approach on experimental data collected from Li-ion 
batteries is presented. 

Introduction   

The application of artificial intelligence (AI) has 
successfully been adopted in many engineering systems. 
This is in part true because researchers have  focused not 
so much recreating human knowledge (and it would be 
unreasonable to cast hundreds of years of engineering 
knowledge in abstract logic) but has instead focused on 
how AI and can support various engineering task. As an 
indirect result, the expanding research in AI has over the 
years given rise to a variety of sub-fields like knowledge 
engineering, expert systems, soft computing, and 
automated reasoning. The field of prognostics is a prime 
example where AI can make a tremendous impact in 
support of engineering. At the core of prognostics are 
complex engineering systems that provide crucial 
information for the remaining life estimation task. 
Algorithms – influenced by AI – are then tasked with 
predicting when a component will fail, sort through 
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possibly many different future use branches, deal with 
uncertainty from sensors, model, future use, etc., be 
conscious of computational resources, and do this in a way 
that can be validated and verified.    
 Very early development of AI concentrated on logical 
systems, which interacted with the world through "if and 
then" statements. The importance of probabilities rose with 
the realization that logical systems could not anticipate all 
possible contingencies. Consequently Bayesian techniques 
(amongst others) started to be assimilated in the AI 
domain. Simply put, Bayes’ theory defines the concept of 
probability as the degree of belief that a proposition is true. 
Furthermore, it also suggests that Bayes' theorem can be 
used as a rule to infer or update the degree of belief in light 
of new information or data – the more the data, the better 
the predictions. An additional advantage is that Bayesian 
models are self-correcting, meaning that the predictions 
change with change in data trends. 
 Support Vector Machines (SVMs) (Vapnik 1995) are a 
set of related supervised learning methods used for 
classification and regression that belong to a family of 
generalized linear classifiers. The Relevance Vector 
Machine (RVM) (Tipping 2000) is a Bayesian form 
representing a generalized linear model of identical 
functional form of the SVM.  
 Bayesian techniques also provide a general rigorous 
framework for dynamic state estimation problems. The 
core idea is to construct a probability density function 
(PDF) of the state based on all available information. For a 
linear system with Gaussian noise, the method reduces to 
the Kalman filter. The state space PDF remains Gaussian at 
every iteration and the filter equations propagate and 
update the mean and covariance of the distribution.  

Methodology 

Relevance Vector Machine 

In a given classification problem, the data points may be 
multidimensional (say n). The task is to separate them by a 
n-1 dimensional hyperplane. This is a typical form of 
linear classifier. There are many linear classifiers that 
might satisfy this property. However, an optimal classifier 
would additionally create the maximum separation 
(margin) between the two classes. Such a hyperplane is 



known as the maximum-margin hyperplane and such a 
linear classifier is known as a maximum-margin classifier. 
Nonlinear kernel functions can be used to create nonlinear 
classifiers (Boser, Guyon, and Vapnik 1992). This allows 
the algorithm to fit the maximum-margin hyperplane in the 
transformed feature space, though the classifier may be 
nonlinear in the original input space.  
 This technique was also extended to regression problems 
in the form of support vector regression (SVR) (Drucker et 
al. 1997). Regression can essentially be posed as an inverse 
classification problem where, instead of searching for a 
maximum margin classifier, a minimum margin fit needs 
to be found. Although, SVM is a state-of-the-art technique 
for classification and regression, it suffers from a number 
of disadvantages, one of which is the lack of probabilistic 
outputs that make more sense in health monitoring 
applications. The RVM attempts to address these very 
issues in a Bayesian framework. Besides the probabilistic 
interpretation of its output, it uses a lot fewer kernel 
functions for comparable generalization performance. 
 This type of supervised machine learning starts with a 
set of input vectors { }N

nn 1=t  and their corresponding targets 
{ }N

nn 1=θ . The aim is to learn a model of the dependency of the 
targets on the inputs in order to make accurate predictions 
of θ for unseen values of t. Typically, the predictions are 
based on some function F(t) defined over the input space, 
and learning is the process of inferring the parameters of 
this function. In the context of SVM, this function takes the 
form: 
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kernel function. 
 In the case of RVM, the targets are assumed to be 
samples from the model with additive noise: 
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where, εn are independent samples from some noise 
process (Gaussian with mean 0 and variance σ2

). Assuming 
the independence of θn, the likelihood of the complete data 
set can be written as: 
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where, ΦΦΦΦ is the N x (N+1) design matrix with ΦΦΦΦ = [Φ(t1), 
Φ(t2), …, Φ(tn)]

T
, wherein Φ(tn) = [1, K(tn,t1), K(tn,t2), …, 

K(tn,tN)]
T
.   

 To prevent over-fitting a preference for smoother 
functions is encoded by choosing a zero-mean Gaussian 
prior distribution ℘ over w: 
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with ηηηη a vector of N + 1 hyperparameters. To complete the 
specification of this hierarchical prior, we must define 
hyperpriors over ηηηη, as well as over the noise variance σ2

. 
 Having defined the prior, Bayesian inference proceeds 
by computing the posterior over all unknowns given the 
data from Bayes' rule: 
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Since this form is difficult to handle analytically, the 
hyperpriors over ηηηη and σ2

 are approximated as delta 
functions at their most probable values ηηηηMP and σ

2
MP. 

Predictions for new data are then made according to: 
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Particle Filters 

For nonlinear systems or non-Gaussian noise, there is no 
general analytic (closed form) solution for the state space 
PDF. The extended Kalman filter (EKF) is the most 
popular solution to the recursive nonlinear state estimation 
problem (Jazwinski 1970). In this approach the estimation 
problem is linearized about the predicted state so that the 
Kalman filter can be applied. In this case, the desired PDF 
is approximated by a Gaussian, which may have significant 
deviation from the true distribution causing the filter to 
diverge.  
 In contrast, for the Particle Filter (PF) approach 
(Arulampalam 2002; Gordon, Salmond, and Smith 1993) 
the PDF is approximated by a set of particles (points) 
representing sampled values from the unknown state space, 
and a set of associated weights denoting discrete 
probability masses. The particles are generated and 
recursively updated from a nonlinear process model that 
describes the evolution in time of the system under 
analysis, a measurement model, a set of available 
measurements and an a priori estimate of the state PDF. In 
other words, PF is a technique for implementing a 
recursive Bayesian filter using Monte Carlo (MC) 
simulations, and as such is known as a sequential MC 
(SMC) method. 
 Particle methods assume that the state equations can be 
modeled as a first order Markov process with the outputs 
being conditionally independent. This can be written as: 
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where, x denotes the state, y is the output or measurements, 
and kϑ  and kω  are samples from a noise distribution.  
 Sampling importance resampling (SIR) is a very 
commonly used particle filtering algorithm, which 
approximates the filtering distribution denoted as 
p(xk|y0,…,yk) by a set of P weighted particles {(wk

(i)
,xk

(i)
): 

i=1,…,P}. The importance weights wk
(i)
 are 

approximations to the relative posterior probabilities of the 
particles such that 
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The weight update is given by: 



 ,
),|(

)|()|(

:11:0

1)(

1

)(

kkk

kkkki

k

i

k

pp
ww

yxx

xxxy

−

−
−=

π
            (9) 

where, the importance distribution π(xk|x0:k-1,y1:k) is 
approximated as p(xk|xk-1). 

Application 

Batteries form a core component of many machines and 
are often times critical to the well being and functional 
capabilities of the overall system. Failure of a battery can 
lead to reduced performance, operational impairment and 
even catastrophic failure, especially in aerospace systems. 
A case in point is NASA’s Mars Global Surveyor which 
stopped operating in November 2006. Preliminary 
investigations revealed that the spacecraft was commanded 
to go into a safe mode, after which the radiator for the 
batteries was oriented towards the sun. This increased the 
temperature of the batteries and they lost their charge 
capacity in short order. This scenario, although drastic, is 
not the only one of its kind in aerospace applications. An 
efficient method for battery monitoring would greatly 
improve the reliability of such systems. 

Model Development 

In order to tie in the above discussed techniques, namely 
RVM and PF, with the battery health monitoring problem, 
the process is broken down into an offline and an online 
part. During offline analysis, the battery/cell operation is 
expressed in the form of structural and functional models, 
which aid in the construction of the “physics of failure 
mechanisms” model. Features extracted from sensor data 
comprising of voltage, current, power, impedance electro-
chemical impedance spectrometry (EIS), frequency and 
temperature readings, are used to estimate the internal 
parameters of the battery model shown in Figure 1. The 
parameters of interest are the double layer capacitance 
CDL, the charge transfer resistance RCT, the Warburg 
impedance RW and the electrolyte resistance RE. 
 

 
Figure 1. Lumped Parameter Model of a Cell 

 

The values of these internal parameters change with 
various ageing and fault processes like plate sulfation, 
passivation and corrosion. RVM regression is performed 
on parametric data collected from a group of cells over a 
long period of time so as to find representative ageing 
curves. Since we want to learn the dependency of the 
parameters with time, the RVM input vector t is time, 
while the target vector θ is given by the inferred parametric 

values. Exponential growth models, as shown in equation 
10, are then fitted on these curves to identify the relevant 
decay parameters like C and λ: 
 ),exp(

~
tC λθ =                 (10) 

where, θ
~
 is the model predicted value of an internal 

battery parameter like RCT or RE. The overall model 
development scheme is depicted in the flowchart of Figure 
2. 
 

 
 

Figure 2. Schematic of Model Development 

RUL Estimation 

The system description model developed in the offline 
process is fed into the online process. Data from the system 
sensors are mapped into system features which are 
subsequently used to estimate the RUL as explained below. 
The PF uses the parameterized exponential growth model, 
described in equation 10, for the propagation of the 
particles in time. The algorithm incorporates the model 
parameters C and λ as well as the internal battery 
parameters RE and RCT as components of the state vector x, 
and thus, performs parameter identification in parallel with 
state estimation. The measurement vector y is comprised of 
the battery parameters inferred from measured data. The 
values of C and λ learnt from the RVM regression are used 
as initial estimates for the particle filter. Resampling of the 
particles is carried out in each iteration so as to reduce the 
occurrence of degeneracy of particle weights. Taking 
advantage of the highly linear correlation between RCT+RE 
and C/1 capacity (as derived from data), predicted values 
of the internal battery model parameters are used to 
calculate expected charge capacities of the battery. The 
predictions are compared against end-of-life thresholds to 
derive the RUL estimates.  Figure 3 shows a simplified 
schematic of the process described above. 
 

 
 

Figure 3. Particle Filter Framework 

Feature 

Extraction 

PF 

Tracking 

PF 

Prediction 

Sensor 

Data 

Impedance-
Capacity Mapping 

Prediction 

RUL 

<nominal threshold exceeded> 

Feature 

Extraction 

RVM 

Regression 

Model 

Identification 

Sensor 

Data 

CDL 

RCT RW 

RE 



Results 

The data used in this study had been collected from second 
generation 18650-size lithium-ion cells (i.e., Gen 2 cells) 
that were cycle-life tested at the Idaho National Laboratory 
under the Advanced Technology Development (ATD) 
Program, initiated in 1998 by the U.S. Department of 
Energy to find solutions to the barriers that limit the 
commercialization of high-power lithium-ion batteries. The 
cells were aged at 60% state-of-charge (SOC) and various 
temperatures (25°C and 45°C).  
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Figure 4. Shift in EIS Data with Ageing 

 
The results for the model development section are 
presented in the form of 3 plots. Figure 4 shows the shift in 
electro-chemical impedance spectrometry (EIS) data of one 
of the test cells with ageing at 25°C. The nearly vertical 
left tails of the EIS plots are due to inductances in the 
battery terminals and connection leads. In some models 
this distributed inductance is represented in the form of a 
lumped inductance parameter L in series with the 
electrolyte resistance RE. The tails on the right side of the 

curves arise from diffusion based cell transport 
phenomena. This is modeled as the parameter RW in Figure 
1.  
 Figure 6 shows a zoomed in section of the data 
presented above in Figure 4 with the battery internal model 
parameters identified. Since the expected frequency plot of 
a resistance and a capacitance in parallel is a semicircle, we 
fit semicircular curves to the central sections of the data in 
a least-square sense. The left intercept of the semicircles 
give the RE values while the diameters of the semicircles 
give the RCT values. Other internal parameters like RW and 
CDL are not plotted since they showed negligible change 
over the ageing process and are excluded from further 
analysis. 
 Figure 5 shows the output of the RVM regression along 
with the exponential growth model fits for RE and RCT. The 
use of probabilistic kernels in RVM helps to reject the 
effects of outliers and the varying number of data points at 
different time steps, which can bias conventional least-
square based model fitting methods. 
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Figure 5. RVM Regression and Growth Model Fit 
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Figure 6. Zoomed EIS Plot with Internal Battery Model Parameter Identification 



 
Figure 7 shows both the state tracking and future state 
prediction plots for data collected at 45°C. The threshold 
for fault declaration has been arbitrarily chosen. The 
estimated λ value for the RCT growth model (equation 10) 
is considerably larger than of the training data (collected 
at 25°C). Consequently, the diagnosis is that the cell has 
undergone rapid passivation due to the elevated 
temperatures. 
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Figure 7. Particle Filter Output 

 
Figure 8 shows the high degree of linear correlation 
between the C/1 capacity and the internal impedance 
parameter RE+RCT. We exploit this relationship to 
estimate the current and future C/1 capacities.  
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Figure 8. Correlation between Capacity and Impedance 

Parameters 

 
Remaining-useful-life (RUL) or time-to-failure (TTF) is 
used as the relevant metric for SOL. This is derived by 
projecting out the capacity estimates into the future 
(Figure 9) until expected capacity hits a certain 

predetermined end-of-life threshold. The particle 
distribution is used to calculate the RUL probability 
density (PDF) by fitting a mixture of Gaussians in a least-
squares sense. As shown in Figure 9, the RUL PDF 
improves in both accuracy (centering of the PDF over the 
actual failure point) and precision (spread of the PDF over 
time) with the inclusion of more measurements before 
prediction. 
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Figure 9. Particle Filter Prediction 

Conclusions 

The combined Bayesian regression-estimation approach 
implemented as a RVM-PF framework has significant 
advantages over conventional methods RUL estimation. 
A Bayesian statistical approach is very well suited to 
complex systems whose internal state variables are either 
inaccessible to sensors or hard to measure under 
operational conditions, and whose performance is 
strongly influenced by ambient environmental and load 
conditions. Additionally, the discussed methodology does 
not simply provide a mean estimate of the time-to-failure; 
rather it generates a probability distribution over time that 
best encapsulates the uncertainties inherent in the system 
model and measurements and in the basic concept of 
failure prediction. 
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