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We can show further that there can be no machine £• which, when
supplied iviih the S.D of an arbitrary machine AV, will determine vjhether AV
ever prints a given symbol (0 say).

We will first show that, if there is a machine £, then there is a general
process for determining whether a given machine . U< prints 0 infinitely
often. Let Jlx be a machine which prints the same sequence as A\, except
that in the position where the first 0 printed by .11- stands, A\x prints 0.
• U2 is to have the first two s\aribols 0 replaced by 0, and so on. Thus, if • U-
were to print

ABAQlAABOQIOAB...,

then A\± would print

ABA01AAB0010AB...

and .112 would print

ABAoiAAB~00l0AB....

Xow let H; be a machine which, when supplied with the S.D of .U, will
write down successively the S.D of .11, of .lll5 of • U2, ... (there is such a
machine). We combine V' with I' and obtain a new machine, Xj. In the
motion of (, first > is used to write down the S.D of -U, and then t tests
it.: o: iy written if it is found that • 11 never prints 0; then ^ writes the S.D
of • II2, and this is tested.. : 0 : being printed if and only if • Ux never prints 0)
and so on. KOAV let us test .<, with ('. If it is found that X] never prints 0,
then .H prints 0 infinitely often; if Xj prints 0 sometimes, then .11 does not
print 0 infinitely often.

Similarly there is a general process for determining whether • U- prints 1
infinitely often. By a combination of these processes we have a process
for determining whether. U prints an infinity of figures, i.e. we have a process
for determining whether .11 is circle-free. There can therefore be no
machine i .

The expression "there is a general process for determining..." has
been used throughout this section as equivalent to "there is a machine
which will determine ... ". This usage can be justified if and only if we
can justify our definition of "computable". For each of these "general
process:' problems can be expressed as a problem concerning a general
process for determining Avhether a given integer n has a property G(n) [e.g.
G{n) might mean "n is satisfactory" or "n is the Godel representation of
a provable formula"], and this is equivalent to computing a number
whose n-th. figure is 1 if G (n) is true and 0 if it is false.
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9. The extent of the computable numbers.

No attempt has yet been made to show that the " computable " numbers
include all numbers which would naturally be regarded as computable. Al I
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is " What are the possible processes which can be
carried out in computing a number?"

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(6) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are
computable.

Once it is granted that computable numbers are all c: computable"".
several other propositions of the same character follow. In particular, it
follows that, if there is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can bo
carried out by a machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbols on paper. "We
may suppose this paper is divided into squares like a child's arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, i.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent j . The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

f If we regard a symbol as literally printed on a square we may suppose that the square
is 0 < x < 1, 0 < y < 1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer's ink. If these sets are restricted to be measurable, we can define
the "distance" between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer's ink unit distance is unity, and there is an
infinite supply of ink at x = 2. y = 0. With this topology the symbols form a condition-
ally compact space.
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17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his " state of mind " at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be '' arbitrarily close " and will be confused. Again, the restriction
is not one which seriously affects computation, since the use of more compli-
cated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into "simple operations" which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes
can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in

regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
"observed" squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. I think it is reasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with "immediate recognisability ", it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-
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diately recognisable. Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If.
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find " . . . hence (applying Theorem 157767733443477) we have ... ".
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other "immediately recognisable" squares,
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in III below.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(6) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(A) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (6) of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an " m-configuration " of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. In any move the machine can change a symbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned
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squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

II. [Type (6)].

If the notation of the Hilbert functional calculus f is modified so as to
be systematic, and so as to involve onty a finite number of symbols3 it
becomes possible to construct an automatic J machine 3C, which will find
all the provable formulae of the calculus§.

Now let a be a sequence, and let us denote by Ga(x) the proposition
"The rc-th figure of a is 1 ", so that1' —Ga(x) means "The z-th figure of a
is 0 ". Suppose further that we can find a set of properties which define
the sequence a and which can be expressed in terms of Ga(x) and of the
prepositional functions N(x) meaning "x is a non-negative integer" and
F(x, y) meaning "y = x-\-l ". When we join all these formulae together
conjunctively, we shall have a formula, % say, which defines a. The terms
of 21 must include the necessary parts of the Peano axioms, viz.,

N(x)-»(3y)F(x, y)) &(F(X,

which we will abbreviate to P.
When we say " 2( defines a", we mean that —21 is not a provable

formula, and also that, for each n, one of the following formulae (A,J or
(BJ is provable.

%&Ftn^Ga(uW), (AB)«T

where F™ stands for F{u, u') & F(u', u") & ... F^-v, u™).

f The expression "the functional calculus" is used throughout to mean the restricted
Hilbert functional calculus.

+ It is most natural to construct first a choice machine (§ 2) to do this. But it is
then easy to construct the required automatic machine. We can suppose that the choice3
are always choices between two possibilities 0 and 1. Each proof will then be determined
by a sequence of choices ilt i2, ..., •?•„ (ix = 0 or 1, u = 0 or 1, ..., in = 0 or 1), and hence
the number 2" + i1 2"~^-\-i22"---\-...-\-in completely determines the proof. The automatic
machine carries out successively proof 1, proof 2, proof 3, ... .

§ The author has found a description of such a machine.
II The negation sign is written before an expression and not over it.
*\ A sequence of r primes is denoted by '''-1.
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I say that a is then a computable sequence: a machine 'JCa to compute
a can be obtained by a fairly simple modification of JC

We divide the motion of Ka into sections. The n-th section is devoted
to finding the n-th figure of a. After the (n— l)-th section is finished a double
colon :: is printed after all the symbols, and the succeeding work is done
wholly on the squares to the right of this double colon. The first step is to
write the letter "A " followed by the formula (An) and then " B " followed
by (Bn). The machine Ka then starts to do the work of JC, but whenever
a provable formula is found, this formula is compared with (An) and with
(Bn). If it is the same formula as (An), then the figure " 1 " is printed, and
the n-th. section is finished. If it is (B,J, then " 0 " is printed and the section
is finished. If it is different from both, then the work of K is continued
from the point at which it had been abandoned. Sooner or later one of
the formulae (An) or (B?1) is reached; this follows from our hypotheses
about a and 21, and the known nature of JC. Hence the n-th section will
eventually be finished. 3CO is circle-free; a is computable.

It can also be shown that the numbers a definable in this way by the use
of axioms include all the computable numbers. This is done by describing
computing machines in terms of the function calculus.

It must be remembered that we have attached rather a special meaning
to the phrase " 21 defines a ". The computable numbers do not include all.
(in the ordinary sense) definable numbers. Let 8 be a sequence whose
n-th figure is 1 or 0 according as n is or is not satisfactory. It is an imme-
diate consequence of the theorem of § 8 that 8 is not computable. It is (so
far as we know at present) possible that any assigned number of figures of 8
can be calculated, but not by a uniform process. When sufficiently many
figures of 8 have been calculated, an essentially new method is necessaiy in
order to obtain more figures.

III. This may be regarded as a modification of I or as a corollary of II.

We suppose, as in I, that the computation is carried out on a tape; but we
avoid introducing the "state of mind" by considering a more physical
and definite counterpart of it. It is always possible for the computer to
break off from his work, to go away and forget all about it, and later to come
back and go on with it. If he does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be con-
tinued. This note is the counterpart of the "state of mind". We will
suppose that the computer works in such a desultory manner that he never
does more than one step at a sitting. The note of instructions must enable
him to carry out one step and write the next note. Thus the state of progress
of the computation at any stage is completely determined by the note of
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instructions and the symbols on the tape. That is, the state of the system
may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we suppose not to appear
elsewhere) and then by the note of instructions. This expression may be
called the "state formula". We know that the state formula at any
given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible
in the functional calculus. In other words, we assume that there is an
axiom 2( which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the
state formula at the preceding stage. If this is so, we can construct a
machine to write down the successive state formulae, and hence to
compute the required number.

10. Examples of large classes of numbers which are computable.

It will be useful to begin with definitions of a computable function of
an integral variable and of a computable variable, etc. There are many
equivalent ways of defining a computable function of an integral
variable. The simplest is, possibly, as follows. If y is a computable
sequence in which 0 appears infinitely! often, and n is an integer, then let
us define £(y, n) to be the number of figures 1 between the n-th and the
(?i-\- l)-th figure 0 in y. Then <f)(n) is computable if, for all n and some y,
.<f>(n) = £(y, n). An equivalent definition is this. Let H(x, y) mean
<f)(x) = y. Then, if we can find a contradiction-free axiom 21̂ , such that
2^-* P, and if for each integer n there exists an integer N, such that

% &

and such that, if m=£<f>(n), then, for some N',

% &

then <j> may be said to be a computable function.
We cannot define general computable functions of a real variable, since

there is no general method of describing a real number, but we can define
a computable function of a computable variable. If n is satisfactory,
let yn be the number computed by ./U {n), and let

| If *Al computes y, then the problem whether .11 prints 0 infinitely often is of the
same character as the problem whether A\, is circle-free.
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unless yn = 0 or yn — 1, in either of which cases an = 0. Then, as n
runs through the satisfactory numbers, an runs through the computable
numbersf. Now let <f)(n) be a computable function which can be
shown to be such that for any satisfactory argument its value is satis-
factory %. Then the function /, defined by f(an) — a^n), is a computable
function and all computable functions of a computable variable are
expressible in this form.

Similar definitions may be given of computable functions of several
variables, computable-valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I
shall prove only (ii) and a theorem similar to (iii).

(i) A computable function of a computable function of an integral or
computable variable is computable.

(ii) Any function of an integral variable defined recursively in terms
of computable functions is computable. I.e. if 0(ra, n) is computable, and
r is some integer, then rj(n) is computable, where

(iii) If <f> (m, n) is a computable function of two integral variables, then
<j>{n, n) is a computable function of n.

(iv) If (j>(n) is a computable function whose value is always 0 or 1, then
the sequence whose fi-th figure is <f>(n) is computable.

Dedekind's theorem does not hold in the ordinary form if we replace
*' real'' throughout by '' computable''. But it holds in the following form :

(v) If G(a) is a propositional function of the computable numbers and

(a) (3a)(3jB){G(a)&(-G(j8))},

(6) Q(a)

and there is a general process for determining the truth value of G(a), then

f A function an may be defined in many other ways so as to run through the
computable numbers.

J Although it is not possible to find a general process for determining whether a given
number is satisfactory, it is often possible to show that certain classes of numbers are
satisfactory.
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there is a computable number £ such that

In other words, the theorem holds for any section of the computables
such that there is a general process for determining to which class a given
number belongs.

Owing to this restriction of Dedekind's theorem, we cannot say that a
computable bounded increasing sequence of computable numbers has a
computable limit. This may possibly be understood by considering a
sequence such as

l ± 1 I I I
J-5 2 ' 5 ' 8 ' i o j 2» • • • •

On the other hand, (v) enables us to prove

(vi) If a and /? are computable and a < /? and <£(a) < 0 < </>(/?), where
(f>(a) is a computable increasing continuous function, then there is a unique
computable number y, satisfying a < y < fi and <f>(y) = 0.

Computable convergence.

We shall say that a sequence fin of computable numbers converges
computably if there is a computable integral valued function N(e) of the
computable variable e, such that we can show that, if e > 0 and n > N(e)
and m > N(e), then \pn—j8m| < e.

We can then show that

(vii) A power series whose coefficients form a computable sequence of
computable numbers is computably convergent at all computable points
in the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.

And with the obvious definition of " uniformly computably convergent":

(ix) The limit of a uniformly computably convergent computable
sequence of computable functions is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable
sequence is a computable function in the interior of its interval of
convergence.

From (viii) and TT— 4(1—i-|--i—...) we deduce that TT is computable.

From e = l + l+n-j-+»-j+.. . we deduce that e is computable.
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From (vi) we deduce that all real algebraic numbers are computable.
From (vi) and (x) we deduce that the real zeros of the Bessel functions

are computable.

Proof of (ii).

Let H(x, y) mean "r](x) = y", and let K{x, y, z) mean "(f>(x, y) = z".
21̂  is the axiom for <f>(x, y). We take 31, to be

% & P & (F{x, y)-*Q{x, y)) & [G{x, y) & G(y, z)->G(x, z))

& (FW-*H{U, VP>)) & (J(v, w) & #(v, x) & Z(w, x} z)->H(iv, z))

& [ £ f ( w , 2) & ^ ( 2 , <)v (?(<, z)

I shall not give the proof of consistency of %n. Such a proof may be
constructed by the methods used in Hilbert and Bernays, Grundlagen der
Mathematik (Berlin, 1934), p. 209 et seq. The consistency is also clear
from the meaning.

Suppose that, for some n, N, we have shown

% &

then, for some M,

% &

&

and

Hence 21,

Also ST, &

Hence for each w some formula of the form

is provable. Also, if M'^M and i f ' ^ m and m^r)(u), then

SI, & FW^G^W), u^) v G(u^m\
8EB. 2. VOL. 42 . NO. 2145.
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and

2( & FW)-^ f {G(u^n^, w(m)) v G(u^m\

&

Hence 21, & FW"> -> ( - H { u ^ n \ u™)).

The conditions of our second definition of a computable function are
therefore satisfied. Consequently rj is a computable function.

Proof of a modified form of (iii).

Suppose that we are given a machine Tl, which, starting with a tape
bearing on it 9 9 followed by a sequence of any number of letters "F" on
P-squares and in the m-configuration b, will compute a sequence yn

depending on the number n of letters " F ". If <f>n(m) is the m-th figure of
yv, then the sequence /3 whose n-th. figure is <f>n{n) is computable.

We suppose that the table for Tl has been written out in such a way
that in each line only one operation appears in the operations column. We
also suppose that S, 0, 0, and 1 do not occur in the table, and we replace
9 throughout by 0, 0 by 0, and 1 b y l . Further substitutions are then
made. Any line of form

95

te(23, u, h, k)

93

re(93, t>, h, k)

and we add to the table the following lines:

u pe(ul5 0)

Uj. R, Pk, R, P0, R, P0 u2

u2 re(u3, u3, k, h)

u3 pe(u2, F)

and similar lines with x> for u and 1 for 0 together with the following line

c R, PE, R, Ph 6.
We then have the table for the machine (H/ which computes jS. The

initial m-configuration is c, and the initial scanned symbol is the second a.

we

and

by

21
replace by

21

any line of

21

2(

the

a-

a

form

a

a

PO

PO

Pi

Pi
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11. Application to the Entscheidungsproblem.

The results of § 8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no
solution. For the present I shall confine myself to proving this particular
theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann's Grundziige der Theoretischen Logik (Berlin,
1931), chapter 3.

I propose, therefore, to show that there can be no general process for
determining whether a given formula 2( of the functional calculus K is
provable, i.e. that there can be no machine which, supplied with any one
21 of these formulae, will eventually say whether 21 is provable.

It should perhaps be remarked that what I shall prove is quite different
from the well-known results of Godelf. G odel has shown that (in the forma-
lism of Principia Mathematica) there are propositions 21 such that neither
'21 nor — 21 is provable. As a consequence of this, it is shown that no proof
•of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula % is provable in K, or, what comes to
the same, whether the system consisting of K with —21 adjoined as an
cextra axiom is consistent.

If the negation of what Godel has shown had been proved, i.e. if, for each
21, either 21 or — 21 is provable, then we should have an immediate solution
of the Entscheidungsproblem. For we can invent a machine JC which will
prove consecutively all provable formulae. Sooner or later JC will reach
either 21 or —21. If it reaches 21, then we know that 2( is provable. If it
reaches — 21, then, since K is consistent (Hilbert and Ackermann, p. 65), we
know that 21 is not provable.

Owing to the absence of integers in K the proofs appear somewhat
lengthy. The underlying ideas are quite straightforward.

Corresponding to each computing machine i t we construct a formula
Un (it) and we show that, if there is a general method for determining
whether Un (.11) is provable, then there is a general method for deter-
mining whether i t ever prints 0.

The interpretations of the propositional functions involved are as
follows :

Rst(
x> V) is to be interpreted as "in the complete configuration x (of

J/l) the symbol on the square y is S".

t Loc. cit.
S2
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I(x, y) is to be interpreted as "in the complete configuration x the
square y is scanned".

KQm(x) is to be interpreted as "in the complete configuration x the
m-configuration is qm.

F(x, y) is to be interpreted as sty is the immediate successor of x ".

Inst {qt Sj 8k L 37} is to be an abbreviation for

(x, y, x', y') I (BSj(x, y) k I(x, y) k K8i(x) k F(x, x') k F(y', y))

fI{x'iy')kBSk{x',y)kKqi{x')

k (z) \_F{y', z)v(RSj(x, z) + Rak(x', z)

Inst {q{ 8, Sk R qt} and Inst {qt 8j Sk N q{]

are to be abbreviations for other similarly constructed expressions.
Let us put the description of .11 into the first standard form of § 6. This

description consists of a number of expressions such as "q{ 8i Sk Lqt" (or
with ROT N substituted for L). Let us form all the corresponding expres-
sions such as Inst {qt $3- Sk L qt} and take their logical sum. This we call
Des(.U).

The formula Un(.U) is to be

{3u)[N{u) &, (x)(N{x)->{3x')F(x, X'))

&. (y, z)(F(y, z)->N(y) k N(z)) & (y) R>%(% y),

& I(u, u) & Kqi{u) & Des(..U)l

->(35) (30 [N(s) & N(t) & RSl(s, t)).

[K{u)&... &Des(.U)] may be abbreviated to A(M).
When we substitute the meanings suggested on p. 259-60 we find that

Un(.U) has the interpretation "in some complete configuration of M, S-^
(i.e. 0) appears on the tape ". Corresponding to this I prove that

(a) If Sx appears on the tape in some complete configuration of • U, then
Un(U) is provable.

(b) If Un (• U) is provable, then 8X appears on the tape in some complete
configuration of • 11.

When this has been done, the remainder of the theorem is trivial.
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LEMMA 1. / / S± appears on the tape in some complete configuration of
.At, then Un(.At) is provable.

We have to show how to prove Un (it). Let us suppose that in the
n-th complete configuration the sequence of symbols on the tape is
&r(n,o)> *̂ r(n,i)5 •••> $i<n,nh followed by nothing but blanks, and that the
scanned symbol is the i(n)-th, and that the m-configuration is q^n). Then
we may form the proposition

, u) & RSrluJvF>, u') & ... & RSr{H,Mn\

which we may abbreviate to CCn.
As before, F{u, u') & F{u', u") & ... & F{u^\ w(r)) is abbreviated

to F<r).
I shall show that all formulae of the form A{-W) & F™^- CCn (abbre-

viated to CFn) are provable. The meaning of CFn is " The n-th. complete
configuration of i t is so and so ", where "so and so " stands for the actual
n-th. complete configuration of i t . That CFn should be provable is
therefore to be expected.

CF0 is certainly provable, for in the complete configuration the symbols
are all blanks, the m-configuration is qx, and the scanned square is u, i.e.
CC0 is

(y) RSo{u, y) & I(u, u) & KQl(u).

A(o\i)->CC0 is then trivial.
We next show that CFn^-CFn+1 is provable for each n. There are

three cases to consider, according as in the move from the n-th to the
(n-j-l)-th configuration the machine moves to left or to right or remains
stationary. We suppose that the first case applies, i.e. the machine
moves to the left. A similar argument applies in the other cases. If

r[n,i(n)}=a, r(n-\-l, i(n-\-l)} = c, k(i(n)j =b, and k(i(n-\-l)) =d,
then Des (it) must include Inst {qa 8b Sd L q^ as one of its terms, i.e.

Hence A(.AV) & Fin+n^1nat{qa8b8dLqc} &

But Inst{qa Sb 8dLqc} & ^ n + w^(CC n -

is provable, and so therefore is

A (• It) & F(n+»-> (CCn -» C(L .,
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and (AIM) & F™^CCn) -+ (.4(it) & F<n+V^CCn+1),

i.e. CFm-»CF.n+V

CFn is provable for each n. Now it is the assumption of this lemma
that 8± appears somewhere, in some complete configuration, in the sequence
of symbols printed by M; that is, for some integers N, K, CGN has
RS[(u^N\u^) as one of its terms, and therefore CCN^RSl{u{N\ u(K)) is
provable. We have then

and A(.M)&FW->CCN.

We also have

(3u)A(M)-+(3u)(3uf)...

where N' — max (N, K). And so

(3u) A (. U.) -> (3^7)) (3uW) RS

(3u)A(M)->(3s)(3t)RSl(s,t),

i.e. Un(-U) is provable.
This completes the proof of Lemma 1.

LEMMA 2. / / Un(-U) is provable, then S1 appears on the tape in some
complete configuration of M.

If we substitute any propositional functions for function variables in
a provable formula, we obtain a true proposition. In particular, if we
substitute the meanings tabulated on pp. 259-260 in Un(^U), we obtain a
true proposition with the meaning " S1 appears somewhere on the tape in
some complete configuration of .M".

We are now in a position to show that the Entscheidungsproblem cannot
be solved. Let us suppose the contrary. Then there is a general
(mechanical) process for determining whether Un(.tl) is provable. By
Lemmas 1 and 2, this implies that there is a process for determining whether
.41 ever prints 0, and this is impossible, by §8. Hence the Entscheidungs-
problem cannot be solved.

In view of the large number of particular cases of solutions of the
Entscheidungsproblem for formulae with restricted systems of quantors, it
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is interesting to express Un(ii) in a form in which all quantors are at the
beginning. Un(At) is, in fact, expressible in the form

{u){3x){w){3u1)...{3un)%, (I)

where 95 contains no quantors, and n = 6. By unimportant modifications
we can obtain a formula, with all essential properties of Un(.it), which is of
form (I) with n = 5.

Added 28 August, 1936.

APPENDIX.

Computabiliiy and effective calculability

The theorem that all effectively calculable (A-definable) sequences are
computable and its converse are proved below in outline. It is assumed,
that the terms "well-formed formula " (W.F.F.) and "conversion " as used
by Church and Kleene are understood. In the second of these proofs the
existence of several formulae is assumed without proof; these formulae
may be constructed straightforwardly with the help of, e.g., the
results of Kleene in "A theory of positive integers in formal logic'",
American Journal of Math., 57 (1935), 153-173, 219-244.

The W.F.F. representing an integer n will be denoted by Nn. We shall
say that a sequence y whose n-th figure is (f>y(n) is A-definable or effectively
calculable if l-\-</>y(u) is a A-definable function of n, i.e. if there is a W.F.F.
My such that, for all integers n,

i.e. {My} (Nn) is convertible into Xxy.x(x(y)) or into Xxy.x(y) according as

the n-th figure of A is 1 or 0.
To show that every A-definable sequence y is computable, we have to

show how to construct a machine to compute y. For use with machines it
is convenient to make a trivial modification in the calculus of conversion.
This alteration consists in using x, x', x", ... as variables instead of
a, b, c, .... We now construct a machine JL which, when supplied with the
formula My, writes down the sequence y. The construction of X is some-
what similar to that of the machine K which proves all provable formulae
of the functional calculus. We first construct a choice machine £-v which,
if supplied with a W.F.F., M say, and suitably manipulated, obtains any
formula into which M is convertible. £± can then be modified so as to
yield an automatic machine £-2 which obtains successively all the formulae
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into which M is convertible (cf. foot-note p. 252). The machine £>
includes ^2

 a s a Par^. The motion of the machine X when supplied
with the formula My is divided into sections of which the n-th. is
devoted to finding the n-th figure of y. The first stage in this n-th. section
is the formation of {My} {Nn). This formula is then supplied to the
machine £2, which converts it successively into various other formulae.
Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

and with Aa:|Aa;'[{a;}(a;')] |, i.e. Nv

If it is identical with the first of these, then the machine prints the figure 1
and the n-th section is finished. If it is identical with the second, then 0
is printed and the section is finished. If it is different from both, then the
work of .!!2 is resumed. By hypothesis, {My}(Nn) is convertible into one of
the formulae N2 or Nx; consequently the n-th section will eventually be
finished, i.e. the n-th. figure of y will eventually be written down.

To prove that every computable sequence y is A-defUiable, we must
show how to find a formula My such that, for all integers n,

{My}(Nn)c(mvN1+<j)y{n).

Let .11 be a machine which computes y and let us take some description
of the complete configurations of -U by means of numbers, e.g. we may take
the D.N of the complete configuration as described in §6. Let £(n) be
the D.N of the w-th complete configuration of M. The table for the
machine ..U gives us a relation between £(n-\-l) and £(n) of the form

where py is a function of very restricted, although not usually very simple,
form : it is determined by the table for. U. py is A-defmable (I omit the proof
of this), i.e. there is a W.F.F. Ay such that, for all integers n,

Let U stand for

Xu[{{u}(Ay))(Nr)],

where r=£(0); then, for all integers n,

{Uy}(NJ conv N,{n).
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It may be proved that there is a formula V such that
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conv Nx if, in going from the n-th to the (n-\- l)-th
complete configuration, the figure 0 is
printed.

conv JV2 if the figure 1 is printed,

conv N3 otherwise.

Let Wy stand for

so that, for each integer n,

conv {Wy} (Nn),

and let Q be a formula such that

\{Q}(Wy)UNs) convNr(s),

where r(s) is the 5-th integer q for which {Wy} (NQ) is convertible into either
N-L or JVa. Then, if j|f7 stands for

it will have the required property f.

The Graduate College,
Princeton University,

New Jersey, U.S.A.

t In a complete proof of the A-definability of computable sequences it would be best to
modify this method by replacing the numerical description of the complete configurations
by a description which can be handled more easily with our apparatus. Let us choose
certain integers to represent the symbols and the m-configurations of the machine.
Suppose that in a certain complete configuration the numbers representing the successive
symbols on the tape are s1s2... sn, that the m-th symbol is scanned, and that the ?n.-configur-
ationhas the number t; then we may represent this complete configuration by the formula

where

etc.

„ N» ..., # , „ , _ , ] , [Nt, NaJ, [NSM+V ..., NSlt]],

[a, 6] stands for \u f" -{ {u} (a) )(&)]»

[a, 6, c] stands for AM P I \ {u} (a)}(b) J (c)l,




