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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers IT, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
Avays similar to the class of real numbers, it is nevertheless enumerable.
In § 81 examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.
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have valuable applications. In particular, it is shown (§11) that the
Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Church f has introduced an idea of "effective
calculability", which is equivalent to my "computability", but is very
differently defined. Church also reaches similar conclusions about the
EntscheidungsproblemJ. The proof of equivalence between "computa-
bility" and "effective calculability" is outlined in an appendix to the
present paper.

1. Computing machines.

We have said that the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach § 9. For the present I shall only say that the justification
lies in the fact that the human memory is necessarily limited.

We may compare a man in the process of computing a real number to ;i
machine which is only capable of a finite number of conditions q1: q2. .... qI;

which will be called " m-configurations ". The machine is supplied with a
" t ape" (the analogue of paper) running through it, and divided into
sections (called "squares") each capable of bearing a "symbol". At
any moment there is just one square, say the r-th, bearing the symbol <2>(r)
which is "in the machine". We may call this square the "scanned
square ". The symbol on the scanned square may be called the " scanned
symbol". The "scanned symbol" is the only one of which the machine
is, so to speak, "directly aware". However, by altering its m-configu-
ration the machine can effectively remember some of the symbols which
it has "seen" (scanned) previously. The possible behaviour of the
machine at any moment is determined by the ra-configuration qn and the
scanned symbol <S (r). This pair qn, © (r) will be called the '' configuration'':
thus the configuration determines the possible behaviour of the machine.
In some of the configurations in which the scanned square is blank (i.e.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it one place to right or left. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

f Alonzo Church, " An unsolvable problem, of elementary number theory ", American
J. of Math., 58 (1936), 345-363.

X Alonzo Church, "A note on the Entscheidungsproblem", J. of Symbolic Logic, 1
(1936), 40-41.
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will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to "assist the
memory ". It will only be these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used
in the computation of a number. The defence of this contention will be
easier when the theory of the machines is familiar to the reader. In the
next section I therefore proceed with the development of the theory and
assume that it is understood what is meant by "machine", " tape",
"scanned", etc.

2. Definitions.

Automatic machines.

If at each stage the motion of a machine (in the sense of § 1) is completely
determined by the configuration, we shall call the machine an "auto-
matic machine" (or a-machine).

.For some purposes we might use machines (choice machines or
c-manhines) whose motion is onty partially determined by the configuration
(hence the use of the word "possible" in §1). When such a machine
reaches one of these ambiguous configurations, it cannot go on until some
arbitrary choice has been made by an external operator. This would be the
case if we were using machines to deal with axiomatic systems. In this
paper I deal only with automatic machines, and will therefore often omit
the prefix a-.

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind

(called figures) consists entirely of 0 and 1 (the others being called symbols of
the second kind), then the machine will be called a computing machine.
If the machine is supplied with a blank tape and set in motion, starting
from the correct initial ra-configuration, the subsequence of the sjinbols
printed by it which are of the first kind will be called the sequence computed
by the machine. The real number whose expression as a binary decimal is
obtained by prefacing this sequence by a decimal point is called the
number computed by the machine.

At any stage of the motion of the machine, the number of the scanned
square, the complete sequence of all symbols on the tape, and the
ra-configuration will be said to describe the complete configuration at that
stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.
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Circular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called circular. Otherwise it is said to
be circle-free.

A machine will be circular if it reaches a configuration from which there
is no possible move, or if it goes on moving, and possibly printing symbols
of the second kind, but cannot print any more symbols of the first kind.
The significance of the term "circular" will be explained in §8.

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.

3. Examples of computing machines.

I. A machine can be constructed to compute the sequence 010101....
The machine is to have the four m-configurations " b " , " c " , "£" , "c:>

and is capable of printing " 0 " and " 1 ". The behaviour of the machine is
described in the following table in which " R " means "the machine moves
so that it scans the square immediately on the right of the one it was
scanning previously". Similarly for "L". "E" means "the scanned
symbol is erased" and " P " stands for "prints". This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column. When the second
column is left blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol. The machine
starts in the m-configuration b with a blank tape.

-config.

Configuration

m-config.

b

c

c

I

symbol

None

None

None

None

Behaviour

operations final

PO, R

R

PI, R

R

c

c

t

b
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If (contrary to the description in § 1) we allow the letters L, R to appear
more than once in the operations column we can simplify the table
considerably.

m-config. symbol

None

0

1

operations

PO

R, R, P I

R, R, PO

final m-config.

6

b

b

II. As a slightly more difficult example we can construct a machine to
compute the sequence 001011011101111011111 The machine is to
be capable of five ra-configurations, viz. " o ", " q ", "p ", " f ", " b " and of
printing " o " , "x", " 0 " , " 1 " . The first three symbols on the tape will
be " aoO " ; the other figures follow on alternate squares. On the inter-
mediate squares we never print anything but "x". These letters serve to
" keep the place " for us and are erased when we have finished with them.
We also arrange that in the sequence of figures on alternate squares there
shall be no blanks.

Configuration

m-config. symbol

b Pa,

• { ;
fAny (0 or 1)

rt J
q i

[ None

1 g
^ 1I None

fAny

None

Behaviour

operations

R, Po, R, PO. R, R, PO, L, L

i?, Px, L, L, L

R, R

PI , L

E, R

R

L, L

R,R

PO, L, L

final
m-config.

0

0

q

q

p

q

f

p

f

0

To illustrate the working of this machine a table is given below of the
first few complete configurations. These complete configurations are
described by writing down the sequence of symbols which are on the tape,
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with the m-configuration written below the scanned symbol. The
successive complete configurations are separated by colons.

: 9 9 0 O r o o O 0 : 9 9 0 0 : 9 9 0 0 : 9 9 0 0 1 :

b o q q q p

9 9 0 0 1 : 9 9 0 0 1 : 9 9 0 0 1 : 9 9 0 0 1 :

P P f f
9 9 0 0 1 : 9 9 0 0 1 : o a 0 0 1 0 :

f f
9 9 0 0 H-0: ....

c

This table could also be written in the form

b :9 9 o 0 0 : 9 9 q 0 0 : ..., (C)

in which a space has been made on the left of the scanned symbol and the*
m-configuration written in this space. This form is less easy to follow, but
we shall make use of it later for theoretical purposes.

The convention of writing the figures only on alternate squares is very
useful: I shall always make use of it. I shall call the one sequence of alter-
nate squares JF'-squares and the other sequence ^/-squares. The symbols oi •.
^-squares will be liable to erasure. The symbols on F-squares form a
continuous sequence. There are no blanks until the end is reached. There
is no need to have more than one jE'-square between each pair of .F-squarcs :
an apparent need of more ^/-squares can be satisfied by having a sufficiently
rich variety of symbols capable of being printed on ^-squares. If a
symbol /3 is on an F-square S and a symbol a is on the ^-square next on the
right of S, then S and /3 will be said to be marked with a. The
process of printing this a will be called marking jS (or S) with a.

4. Abbreviated tables.

There are certain types of process used by nearly all machines, and.
these, in some machines, are used in many connections. These processes
include copying down sequences of symbols, comparing sequences, erasing
all symbols of a given form, etc. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use
of "skeleton tables". In skeleton tables there appear capital German
letters and small Greek letters. These are of the nature of "variables '".
By replacing each capital German letter throughout by an ^^-configuration
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and each small Greek letter by a symbol, we obtain the table for an
m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations:
they are not essential. So long as the reader understands how to obtain
the complete tables from the skeleton tables, there is no need to give any
exact definitions in this connection.

Let us consider an example:

m-config.

f(e,S5,a)

fi(6,93,a)

Symbol Behaviour Final
m-config.

L f^G, 95, a)

L f(<5,S3,a)

f a

not a

R

R

R

f2(G,

From the m-configuration
f(@, 93, a) the machine finds the
symbol of form a which is far-
thest to the left (the "first a")
and the ?w-confi,guration then
becomes (L If there is no a
then the m-configuration be-
comes 93.

None R

I, 93, a)

93

If we were to replace £ throughout by q (say), 93 by r, and a. by x, we
should have a complete table for the m-configuration f (q, x, x). f is called
an "?/i-configuration function" or "m-function".

The only expressions which are admissible for substitution in an
»i-function are the m-configurations and symbols of the machine. These
have to be enumerated more or less explicitly: they may include expressions
such as p(c, x); indeed they must if there are any m-functions used at all.
If we did not insist on this explicit eaumeration, but simply stated that
the machine had certain m-configurations (enumerated) and all m-configu-
rations obtainable by substitution of m-configurations in certain m-func-
tion.-J, we .should usually get an infinity of m-configurations; e.g., we might
say that the machine was to have the m-configuration q and all m-configu-
rations obtainable by substituting an m-configuration for £ in p(£). Then

it would have q, p(q), pfp(q)V p(p(p(q))), ... asm-configurations.

Our interpretation rule then is this. We are given the names of the
^-configurations of the machine, mostly expressed in terms of m-functions.
We are also given skeleton tables. All we want is the complete table for
the m-configurations of the machine. This is obtained by repeated
substitution in the skeleton tables.
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Further examples.

(In the explanations the symbol " ->" is used to signify "the machine
goes into the ra-configuration. . . . ")

e((5,23,a) f (e^S, S3, a), S3, a) From c(S, 23, a) the first a is
„ ^ erased and -> (L If there is no

c^G, S3, a) # G

c(S3, a) c(c(S3, a), 23, a) From c(S3, a) all letters a are
erased and -»53.

The last example seems somewhat more difficult to interpret than
most. Let us suppose that in the list of m-configurations of some machine
there appears c('b, x) (=q, saj'). The table is

c(6; a;) e(c(b, x). h, x)

or q c(q, 6, a;).

Or, in greater detail:

q c(q, 6, x)

c(q, 6, x) f (ci(q, 6, a.1), t), a)

Cj.(q, I), re) £• q.

In this we could replace cJL(q, h, x) by q' and then give the table for f (with
the right substitutions) and eventually reach a table in which no
m-functions appeared.

, j8) f (pc^G, j8), € , Q ) From pc (g, /3) the machine

[Any i?3JR pe^S.jS) P r i n t s ^ ^ ^
ue (<S j8) \ sequence of sj^mbols and -> C

[None P/S 6

I(S) ^ 2 From f'((5: 2J, a) it does the

r/gx j ^ G same as for f(6, S3, a) but
moves to the left before -^ <3.

f (6,»,o) f(t(6),a3,a)

f"(S,»,o) f(t(S),S8,a)

c(S,S3,o) f'(c-i(S), 55, a) c(<£, S3, a). The machine

c (<l) R pe(€ JS) writes at the end the first sym-
bol marked a and -> £.
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The last line stands for the totality of lines obtainable from it by
replacing fi by any symbol which may occur on the tape of the machine
concerned.

cc(£,S3,a) c(e(G,S3,a),83,a) ce(23, a). The machine
copies down in order at the

cc(23,a) ce(ce(83,a),23,a) end all symbols marked a
and erases the letters a; ->SS.

vc(G,93,a,j8) f(re1(g3$B3a,i8),^5a) rc(£, S3, a, 0). The ma-
chine replaces the first a by

re^^a.fl E,Pp <Z (8 a n d - > g ^ 35 if there is no a.

re(S, a, P) re («(», a, j8), 93, a, j8) «<»' a> #• T h e m a c h i n e r e"
places all letters a by ]S; ->S5.

cr(Ci,23;a) c(tt(G,9$,a,a), S3,a) Cr(83, a) differs from
ce(23, a) 011137" in that the

«(«(5S,a),rc(SS,a,a),a) letters a are not erased. The
m-configuration cv(5S, a) is
taken up when no letters
" a " are on the tape.

•r (C. 21, e. a. ,5) f ( c p i ^ S(, )S), f(3t, g, j8), a)

cp,(C, 2l,i8) 7 f (cp2(e,2T, y), S(,

7 S
cp.,((S. 2(, y)

[noty SI.

The first symbol marked a and the first marked ]8 are compared. If
there is neither a nor ft, —> (I\ If there are both and the symbols are alike,
-> (5. Otherwise -> 21.

cpc(6, SI, G, a, jS) cp (c (e((5, S, yS), 6, a) , SI, g, a, ^)

cpe(S, 21, S, a, j8) differs from cp(§, 21, £, a, j8) in that in the case when
there is similarity the first a and /? are erased.

cpe^, Q, a, P) cpe (cpe(Sl, Q, a, j8), 21, 6, a, )3).

cpe(2I, S, a, j8). The sequence of symbols marked a is compared with
the sequence marked /?. -> Q if they are similar. Otherwise -> 21. Some
of the symbols a and /? are erased.
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JAny
[None

JAny

[None

R
R

R

not a

ce2(95, a,

ce3(S5,a,

a). The machine
finds the last symbol of
form a. -> @.

j8,y)

R

L
f Any R, E, R

None

3)> a ) pc2(S, a, jS). The machine
prints a j8 at the end.

ce(ce(255j8), a) ce3(S5,a,j8,y). The mach-
ine copies down at the end

ce (ce2(S5,0, y), a) £ r s t the symbols marked a,
then those marked jS, and
finally those marked y; it
erases the symbols a, /?, y.

e1((5) From e(^) the marks are
,̂ > erased from all marked sym-

bols. -> @.

5. Enumeration of computable sequences.

A computable sequence y is determined by a description of a machine
which computes y. Thus the sequence 001011011101111... is determined
by the table on p. 234, and, in fact, any computable sequence is capable of
being described in terms of such a table.

It will be useful to put these tables into a kind of standard form. In the
first place let us suppose that the table is given in the same form as the first
table, for example, I on p. 233. That is to say, that the entry in the operations
column is always of one of the forms E :E,R:E,L:Pa: Pa, R: Pa, L:R:L:
or no entry at all. The table can always be put into this form by intro-
ducing more m-configurations. Now let us give numbers to the w-configu-
rations, calling them qx, ..., qR, as in §1. The initial m-configuration is
always to be called qv We also give numbers to the symbols #]_,....., Sm
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and, in particular, blank = 80, 0 = Slt 1 = S2. The hnes of the table are
now of form

Final
m-config. Symbol Operations m-config.

to
to

to

Lines such as

to

are to be written as

to

and lines such as

ft

to be written as

to

s,
Si

Si

Si

Si

Si

s.

PSk,L

PSkiR

PSk

E, R

PS0, R

R

PS,, R

In this way we reduce each line of the table to a line of one of the forms
(Nj, (N2), (i\y.

From each line of form (N^ let us form an expression q( Sj]Sb L qm;
from each line of form (N2) we form an expression qiSjSkRqm;
and from each line of form (N3) we form an expression #,•#, SkNqm.

Let us write down all expressions so formed from the table for the
machine and separate them by semi-colons. In this way we obtain a
complete description of the machine. In this description we shall replace
q{ by the letter "D" followed by the letter "A" repeated i times, and $,- by
" D " followed by "C" repeated j times. This new description of the
machine may be called the standard description (S.D). It is made up
entirely from the letters "A", " C", "D", "L", "R", "N", and from

If finally we replace "A" by " 1 " , "C" by " 2 " , "D" by " 3 " , " L"
by " 4 " , "R" by c ' 5 " , "N" by " 6 " , and "*3> by £ <7" we sh,all have a
description of the machine in the form of an arabic numeral. The integer
represented by this numeral may be called a description number (D.N) of
the machine. The D.N determine the S.D and the structure of the
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machine uniquely. The machine whose D.N is n may be described as

To each computable sequence there corresponds at least one description
number, while to no description number does there correspond more than
one computable sequence. The computable sequences and numbers are
therefore enumerable.

Let us find a description number for the machine I of § 3. When we
rename the m-configurations its table becomes:

q-L ^ o *b1} K q2

q2 SQ P8O, R q3

q3 So PS2) R #4

ft SQ
 PSo>R ft

Other tables could be obtained by adding irrelevant lines such as

qx Sx PSVR q2

Our first standard form would be

qxOQOJRq%j q%^o^o-"ft» 2*3®o^2-"ft' ft^o^oRQ\J•

The standard description is

DADDCRDAA ;DAADDRDAAA;

I ^ ^ D D C C t f i ) ^ ^ \DAAAADDRDA;

A description number is

31332531173113353111731113322531111731111335317

and so is

3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be
called a satisfactory number. In § 8 it is shown that there can be no general
process for determining whether a given number is satisfactory or not.

6. The universal computing machine.

It is possible to invent a single machine which can be used to compute
any computable sequence. If this machine M is supplied with a tape on
the beginning of which is written the S.D of some computing machine .At,

8KR. 2. VOL. 42. NO. 2144. B
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then 'It will compute the same sequence as i t . In this section I explain
in outline the behaviour of the machine. The next section is devoted to
giving the complete table for U.

Let us first suppose that we have a machine i t ' which will write down on
the .F-squares the successive complete configurations of i t . These might
be expressed in the same form as on p. 235, using the second description,
(C), with all symbols on one line. Or, better, we could transform this
description (as in §5) by replacing each ra-configuration by " D " followed
by "A" repeated the appropriate number of times, and by replacing each
symbol by " D " followed by "C" repeated the appropriate number of
times. The numbers of letters'' A " and' ' C " are to agree with the numbers
chosen in §5, so that, in particular, " 0 " is replaced by "DC", " 1 " by
"DCC", and the blanks by " D " . These substitutions are to be made
after the complete configurations have been put together, as in (C). Diffi-
culties arise if we do the substitution first. In each complete configura-
tion the blanks would all have to be replaced by " D ", so that the complete
configuration would not be expressed as a finite sequence of symbols.

If in the description of the machine II of § 3 we replace " o " by " DA A ",
" a " by "DCCC", " q " by "DAAA", then the sequence (C) becomes:

DA .DCCCDCCCDAADCDDC.DCCCDCCCDAAADCDDC:... (CJ

(This is the sequence of symbols on ^-squares.)
It is not difficult to see that if i t can be constructed, then so can i t ' .

The manner of operation of i t ' could be made to depend on having the rules
of operation {i.e., the S.D) of i l written somewhere within itself {i.e. within
i l / ) ; each step could be carried out by referring to these rules. We have
only to regard the rules as being capable of being taken out and ex-
changed for others and we have something very akin to the universal
machine.

One thing is lacking : at present the machine i t ' prints no figures. We
may correct this by printing between each successive pair of complete
configurations the figures which appear in the new configuration but not
in the old. Then (C )̂ becomes

DDA:O:O:DCCCDCCCDAADCDDC:DCCC... (C2)

I t is not altogether obvious that the ^-squares leave enough room for
the necessary "rough work", but this is, in fact, the case.

The sequences of letters between the colons in expressions such as
(Cj) may be used as standard descriptions of the complete configurations.
When the letters are replaced by figures, as in § 5, we shall have a numerical



9

not 9

Any

None

R

L

R, E, R

e^onf)

c(anf)

ei(anf)

anf
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•description of the complete configuration, which may be called its descrip-
tion number.

7. Detailed description of the universal machine.

A table is given below of the behaviour of this universal machine. The
•m-configurations of which the machine is capable are all those occurring in
the first and last columns of the table, together with all those which occur
when we write out the unabbreviated tables of those which appear in the
table in the form of m-functions. E.g., e(anf) appears in the table and is an
wi-fimction. Its unabbreviated table is (see p. 239)

e(anf)

e^anf)

Consequently e1(anf) is an m-configuration of U.
When \l is ready to start work the tape running through it bears on it

the symbol a on an .F-square and again Q on the next i£-square; after this,
on .F-squares only, comes the S.D of the machine followed by a double
colon " : : " (a single symbol, on an .F-square). The S.D consists of a
number of instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) " D " followed by a sequence of letters "A". This describes the
relevant m-configuration.

(ii) "JD" followed by a sequence of letters " C". This describes the
scanned symbol.

(iii) " D " followed by another sequence of letters "C". This
describes the symbol into which the scanned symbol is to be changed.

(iv) " L " , " i2" , or "JV", describing whether the machine is to move
to left, right, or not at all.

(v) " D " followed by a sequence of letters "A". This describes the
final m-configuration.

The machine U is to be capable of printing "A", " 0 " , c t D" , " 0 " ,
• " 1 " , "u", "v", "w", " z " , "y", " z " . The S.D is formed from " ; " ,
•"A", "C", " D " , " L " , ((R"} "N".
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Subsidiary skeleton table.

(Not A R, R con(£, a)

[Nov. 12,

con(@, a)

con̂ CE, a)

con2(§, a)

con(@. a). Starting from
an J^-square, S say, the se-

A L, Pa, R con^S, a) q u e n c e Q o f s y m b o l s describ-

A R,Pa,R c o n ^ a ) ing a configuration closest on
the right of S is marked out

R, Pa, R con2(§, a) with letters a. ->@.D

G

Not C R.R

R, Pa, R con2(£,a) con(S, ). In the final con-
figuration the machine is
scanning the square which is
four squares to the right of the
last square of C. C is left
unmarked.

The table for U.

hx R,R,P:,R,R,PD;R,R,PA anf

anf

6. The machine prints
on the .F-squares after

->anf.

font

not z nor

R, Pz: L

L,L

L

g(anf1} :) anf. The machine marks
the configuration in the last

COn (font, y) c o m p i e t e configuration with
y. -

!om

!om

con (limp, x) font. The machine finds
the last semi-colon not
marked with z. It marks
this semi-colon with z and
the configuration following
it with x.

Hnr,> cpe(c(fom, x, y), iim, x, y) fmp. The machine com-
pares the sequences marked
x and y. I t erases all letters
x and y. -> Sim if they are
alike. Otherwise ->• font.

anf. Taking the long view, the last instruction relevant to the last
configuration is found. It can be recognised afterwards as the instruction
following the last semi-colon marked z. -Mim.
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Sim

•mt

m?3

m?4

mh

A

not

not

A

A .

A

R,Pu,

L,

L,Py,

R, R

Py

con

,R

,R

(stm2,

Sim

Sim

e(mB,

Sim

)

3

2

3

A

C

[Any

[ None

L, L, L, L

, Pa;, j ^ , Z',

con

P:

L, L, L

?, R, R, R

•R, 22

mf2

D R, Px, L, L, L m?3

not : R, Pv, L, L, L m!3

: mL

mf6

inSt, 0, :

xnit

S im. The machine marks out
the instructions. That part of
the instructions which refers to
operations to be carried out is
marked with u, and the final m-
configuration with y. The let-
ters z are erased.

mi. The last complete con-
figuration is marked out into
four sections. The configiira-
ration is left unmarked. The
symbol directly preceding it is
marked with x. The remainder
of the complete configuration
is divided into two parts, of
which the first is marked with
v and the last with w. A colon is
printed after the whole. -> $f;.

, u) Sf;. The instructions (marked
u) are examined. If it is found
that they involve "Print 0" or
"Print 1", then 0: or 1: is
printed at the end.
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in«t fl(t(in«1),tt) «**• T h e n e x t complete
configuration is written down,.

a R, E in^t1(a) carrying out the marked instruc-

L) ce5(o»,.t>, y, x, u, w) t i o n s - T h e l e t t e r s u> v> w> x> V
are erased. -^anf.

i?) ce5(o», v, x, u, y, w)

\nitx{N) ec5(ot>, v, x, y, u, w)

co c(anf)

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers
are not enumerable would also prove that the computable numbers and
sequences cannot be enumerable*. It might, for instance, be thought
that the limit of a sequence of computable numbers must be computable.
This is clearly only true if the sequence of computable numbers is defined
by some rule.

Or we might apply the diagonal process. "If the computable sequences
are enumerable, let a/( be the n-th computable sequence, and let </>;l(ra) be
the ?n-th figure in au. Let /? be the sequence with \—<j>n(n) as its n-th.
figure. Since /3 is computable, there exists a number K such that
l—cf)ll(n) = <f)K(n) all n. Putting n = K, we have 1 = 2(f>K(K), i.e. 1 is
even. This is impossible. The computable sequences are therefore not
enumerable".

The fallacy in this argument lies in the assumption that § is computable.
It would be true if we could enumerate the computable sequences by finite
means, but the problem of enumerating computable sequences is equivalent
to the problem of finding out whether a given number is the D.N of a
circle-free machine, and we have no general process for doing this in a finite
number of steps. In fact, by applying the diagonal process argument
correctly, we can show that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this
general process exists, then there is a machine which computes /?. This
proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that "there must be something wrong". The
proof which I shall give has not this disadvantage, and gives a certain
insight into the significance of the idea "circle-free". It depends not on
constructing /3, but on constructing fi', whose n-th. figure is <j>n{n).

* Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88.
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Let us suppose that there is such a process; that is to say, that we can
invent a machine <D- which, when supplied with the S.D of any computing
machine i l will test this S.D and if i l is circular will mark the S.D with the
symbol "u" and if it is circle-free will mark it with " s ". By combining
the machines <& and U we could construct a machine :l I- to compute the
sequence j8'. The machine <O- may require a tape. We may suppose that
it uses the jE'-squares beyond all symbols on .F-squares, and that when it
has reached its verdict all the rough work done by l0- is erased.

The machine Ji has its motion divided into sections. In the first N— 1
sections, among other things, the integers 1, 2,.. . , N— 1 have been written
down and tested by the machine <Q>-. A certain number, say R(N— I), of
them have been found to be the D.N's of circle-free machines. In the N-th
section the machine (& tests the number N. If N is satisfactory, i.e., if it
is the D.N of a circle-free machine, then R(N) = l-\-R(N—l) and the first
R{N) figures of the sequence of which a $£N is N are calculated. The
R(N)-th figure of this sequence is written down as one of the figures of the
sequence/3' computed by Ji. If N is not satisfactory, then R(N) = R(N— 1)
and the machine goes on to the (iV-(-l)-th section of its motion.

From the construction of J I- we can see that .11- is circle-free. Each
section of the motion of Ji comes to an end after a finite number of steps.
For, by our assumption about Q, the decision as to whether N is satisfactor}'
is reached in a finite number of steps. If N is not satisfactory, then the
JV-th section is finished. If N is satisfactory, this means that the machine
il(JV) whose D.N is N is circle-free, and therefore its J?(iV)-th figure can be
calculated in a finite number of steps. When this figure has been calculated
and written down as the R(N)-th figure of /3', the iV-th section is finished.
Hence il is circle-free.

Now let K be the D.N of Ji. What does Ji do in the K-th. section of
its motion 1 It must test whether K is satisfactory, giving a verdict " 5 "
or "u". Since K is the D.N of JI- and since JI is circle-free, the verdict
cannot be "u". On the other hand the verdict cannot be "s". For if it
were, then in the K-th. section of its motion J I- would be bound to compute
the first R(K—1) + 1 = R(K) figures of the sequence computed by the
machine with K as its D.N and to write down the R(K)-th as a figure of the
sequence computed by ill. The computation of the first R(K) — l figures
would be carried out all right, but the instructions for calculating the
R(K)-th. would amount to "calculate the first R(K) figures computed by
H and write down the R(K)-th". This R{K)-th figure would never be
found. I.e., 'i-l is circular, contrary both to what we have found in the last
paragraph and to the verdict " s " . Thus both verdicts are impossible
and we conclude that there can be no machine '0-.




